

EAST中性束注入加热系统的研究进展

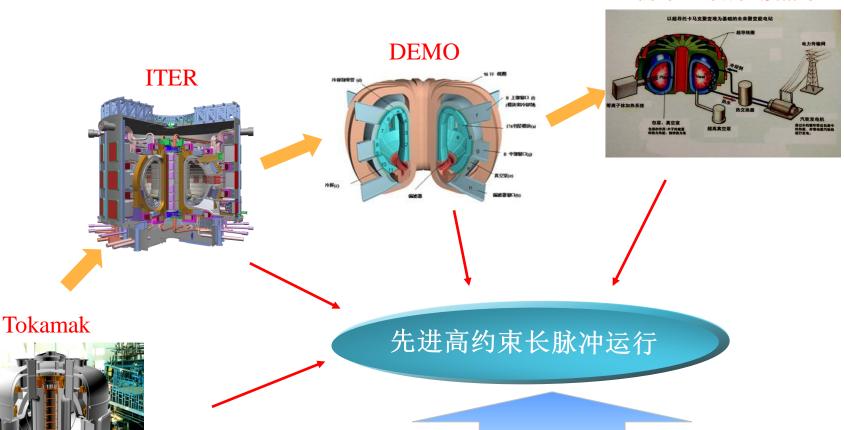
胡纯栋

中科院等离子体物理研究所中性東注入研究室 2013-12-27

1.EAST-NBI科学目标与意义

- 2.EAST-NBI关键科学技术问题
- 3.束与等离子体相关物理研究
- 4.目前的工作进展

1.EAST-NBI科学目标与意义

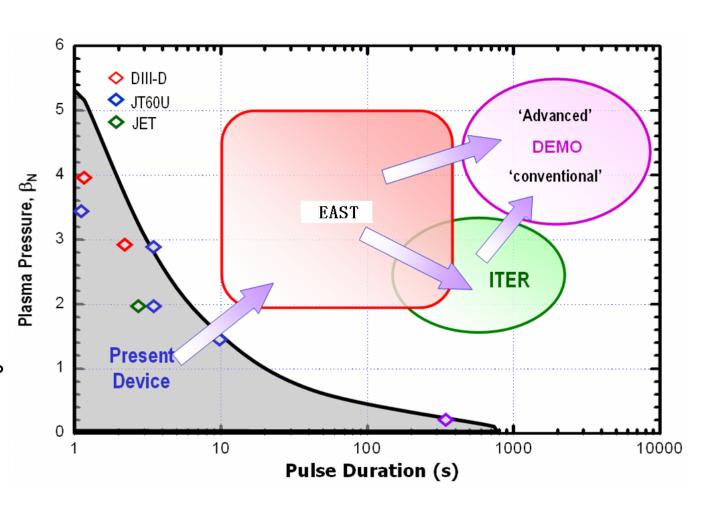

- 2.EAST-NBI关键科学技术问题
- 3.束与等离子体相关物理研究
- 4. EAST-NBI工作进展

聚变能发展趋势

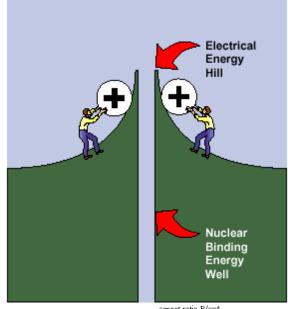
Fusion Power Station

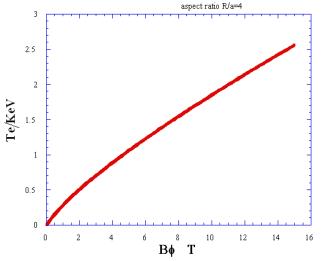
长脉冲高功率中性東注入(NBI)是ITER和未来 反应堆实现稳态高约束运行的有效手段之一

世界上主要核聚变装置



EAST物理目标


- 研究稳态的先 进托卡马克运 行模式;
- 为未来的聚变 实验装置乃至 商用聚变堆积 累物理和工程 技术基础;
- 发展我国的聚变科学与技术。



辅助加热的必要性

Lawson 判据(Q=1)

T > 10 keV (1亿度) $\text{nt} > 3 \text{x} 10^{20} \text{m}^{-3} \text{s}$

欧姆加热

$$P_{\Omega} = \eta j^2$$

托卡马克磁场所确定的欧姆加热 所能达到的电子温度

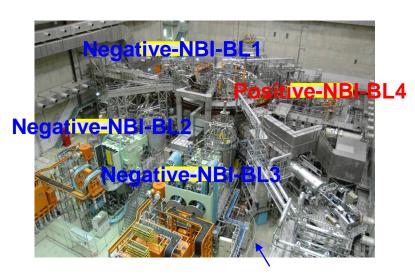
$$T_e(0) = 0.89 \left(\frac{a}{R}B_{\Phi}\right)^{4/5}$$

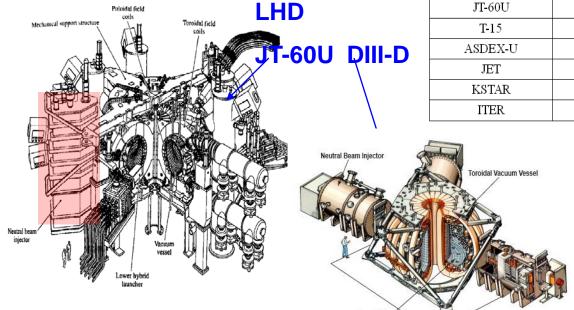
如果B~10T, Te~1.5KeV << 10 KeV (聚 变 条件)

辅助加热是必须的!

EAST科学目标

EAST已经建成,急需长脉冲高功率NBI的支持以最大限度发挥 其科学价值




- 首台投入运行并拥有类似于ITER而 采用全超导磁体的托卡马克装置
- 建立在有强辅助加热和电流驱动基础 之上EAST能为ITER作出更大实质性 的贡献,为中国平等参加ITER这一 重大国际合作奠定基础
- 国际聚变科学家急需利用EAST作为 高参数长脉冲实验平台
- EAST装置一旦具备长脉冲高功率 NBI并辅之已有的辅助加热和电流驱 动系统,就能实现高参数稳态运行, 以开展先进聚变反应堆的前沿性、探索性研究。

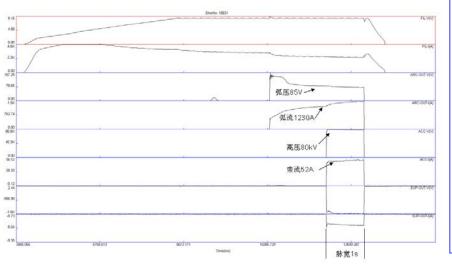
国内外研究现状和发展趋势

部分大型装置的NBI的参数

磁约束装置名称	中性東注入功率	束能量	束脉宽	
做到宋农且石ণ		1	\(\mathra{V}\) \(\mat	备注
	(MW)	(keV)	(s)	
ORMAK	0.36	30	0.05	
TFR	0.65	34	0.05	
PLT	2.5	35	0.3	
PDX	7	50	0.5	
ASDEX	3	40	0.2	
HL-2A	3	60	2	
TFTR	33	120	2	
DIII-D	20	80	5	
JT-60	20	75	10	
JT-60U	40	120		
T-15	9	80	1.5	
ASDEX-U	18	60	5	
JET	20	140	10	
KSTAR	8	120	300	在研
ITER	50	1000	1000	在研

国外部分装置的NBI

国内外研究现状和发展趋势



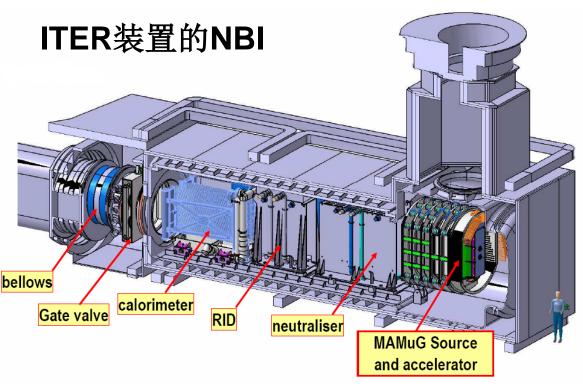
ASIPP研制的NBI综合测试台:

80kV@52A@1s束引出实验波形

国内的研究现状:

◆ 核工业西南物理研究院

- 成功研制了1MW的NBI加热系统,并在HL-2A装置 上开展了NBI加热实验
- 2009年度春季NBI实验中,NBI注入功率达到 0.75MW;离子温度达到2.7KeV
- ▶ 2009年度4月18日,在NBI和ECRH共同作用下, HL-2A装置实现H-模放电
- 正开展基于55kV×26A×2s的强流离子源的高功率 NBI系统研究,进展很快。

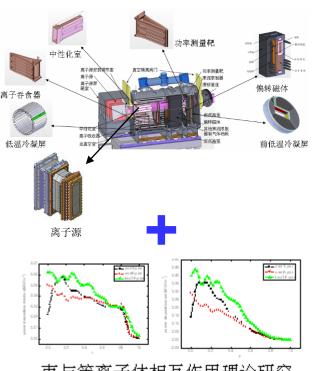

◆ ASIPP方面

- 上世纪八十年代,曾开展NBI研制工作,后因经费问题而停止;
- 2002年,通过与美国的合作,开始MW量级NBI的研究和基于NBI的束与等离子体相互作用研究:
- NBI综合测试台的研制成功并一系列实验成果。

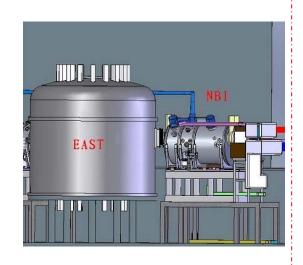
国内外研究现状和发展趋势

● 瞄准聚变能发展趋势,结合我 国聚变研究实际、借鉴ITER装 置NBI技术,以满足现实需求。

发展趋势:


- ◆ 长脉冲高功率离子源理论研究与工程研制,旨在提高离子源的长脉冲工作性能,特别是长脉冲下的束品质、稳定性、可靠性和寿命问题;
- ◆ 发展和完善RF离子源技术;
- ◆ 根据聚变装置的实际需求, 研究负离子源技术,重点 研究如何提高中性束离子 源的离子能量和引出束流:
- ◆ 束线稳态运行研究,解决 大功率长脉冲引起的热负 荷转移、低温真空、实时 高精度测控问题,不断提 高中性束运行脉宽,逐步 实现中性束稳态运行。

NBI总体研究目标



依托EAST装置,立足其科研发展规划,深入开展MW级长脉冲中性束注入加热系统相关的关键物理与工程问题研究,为EAST开展高水平近堆芯聚变研究提供有力支持,为我国培养中性束注入加热领域的高水平专门人才并为ITER中性束注入加热系统的研制与实验研究积累经验与数据,从而切实提升我国参与ITER项目的国际竞争力。

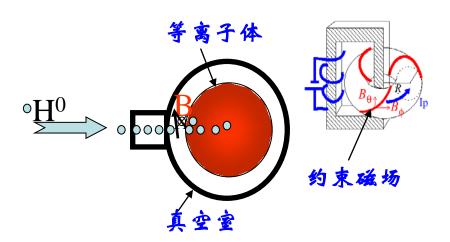
東与等离子体相互作用理论研究

建立长脉冲、高功率、 可调制运行的NBI,开 展实验研究提升聚变研 究实力和水平

- ◆建立完善的束与等离子体 相互作用模拟研究程序体系;
- ◆攻克4MW NBI系统长脉冲运行的关键技术问题;
- ◆形成一套较为完整的高功率长脉冲中性束注入加热系统的分析、设计方法;
- ◆建立4MW、脉宽100S、 可调制运行的长脉冲高功率 NBI;
- ◆开展中性東注入实验,服 务EAST科学目标;

1.EAST-NBI科学目标与意义

2.EAST-NBI关键科学技术问题


3.束与等离子体相关物理研究

4.目前的工作进展

中性東注入加热原理

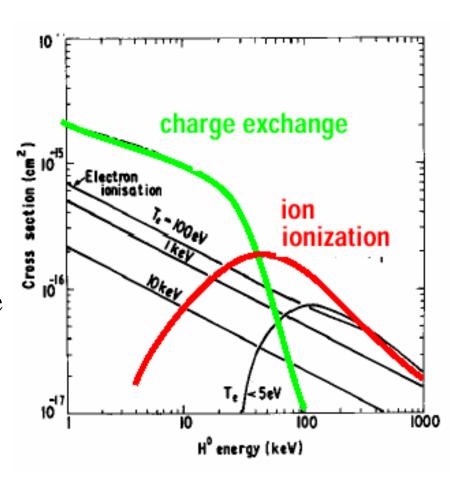
- ●利用已在等离子体外预先加速到 能量比本底等离子体的电子和离子 平均能量大得多的粒子
- ●通过与本底等离子体的碰撞而慢 化的同时,把能量传给电子和离子
- ●只要电子和离子的平均约束时间 大于高能离子的慢化时间,加热即 有效。

中性粒子穿越托卡马克的约束磁场,通过与等离子体中的离子进行电荷交换及与电子、离子间的碰撞变成荷电粒子而被托卡马克磁场捕获。

中性束加热等离子体的类型

H_b中性束粒子,Hp+等离子体

(1) 电荷交换


$$H_b + H_p^+ \longrightarrow H_b^+ + H_p$$

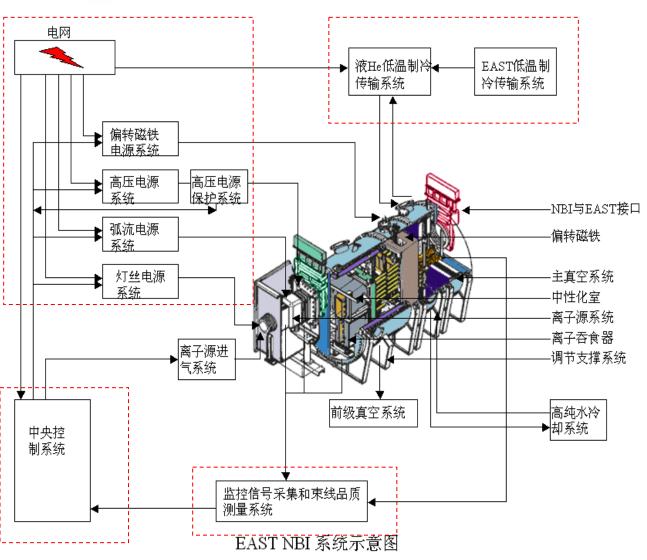
(2) 离子电离

$$H_b + H_p^+ \longrightarrow H_b^+ + H_p^+ + e$$

(3) 电子电离

$$H_b + e \longrightarrow H_b^+ + 2e$$

中性束注入系统的组成



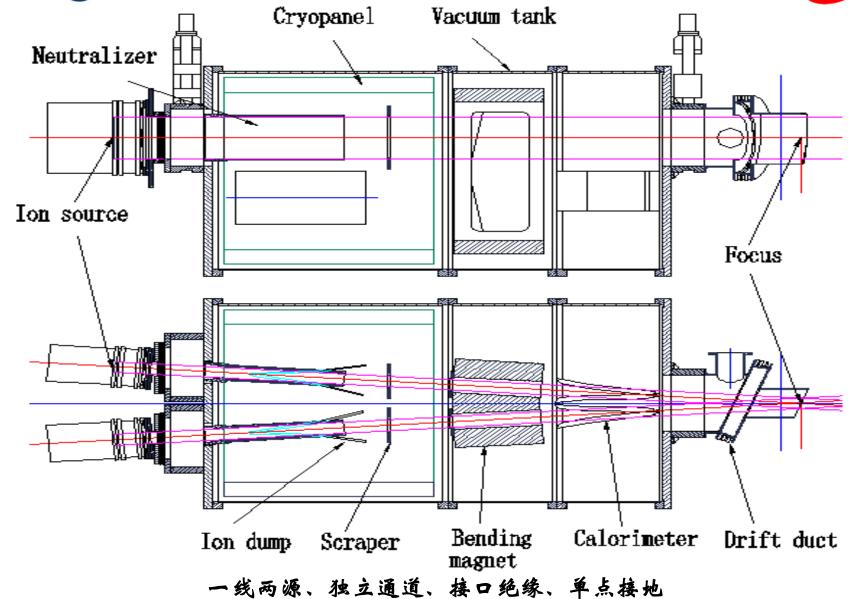
- **离子源**: 电离工作气体并利用电场加速离化的离子产生 离子束
- 束线系统: 离子束中性化并实现束传输至Tokamak
- 低温真空: 束产生和传输需要的真空环境
- 电源系统: 为离子源,偏转磁铁等设备供电
- **控制系统**: 控制和监测整个系统并记录数据,实现报警和联锁功能
- **束诊断系统**:实时监测束的各项参数,如功率沉积、束 散,束功率剖面分析等

中性束注入系统组成

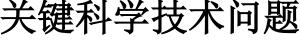
NBI系统综合指标:

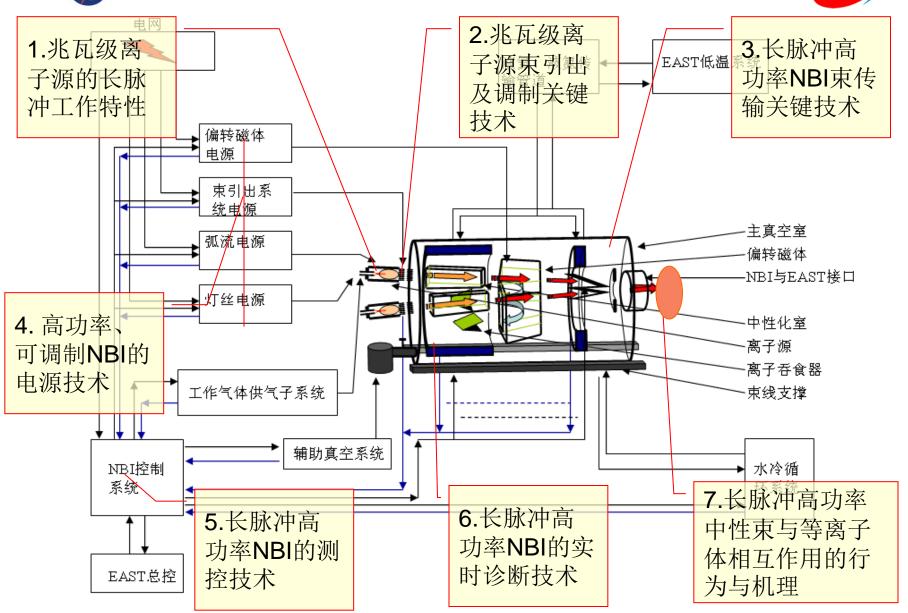
能量范围: 50-80keV

输出功率: 2-4MW


脉冲长度: 10-100s

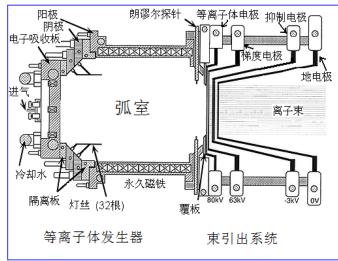
总造价: ~1亿元

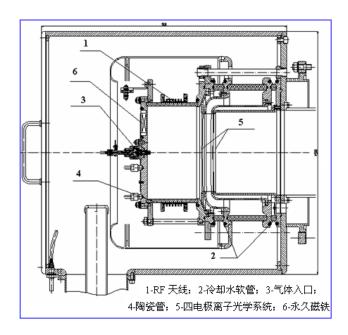

EAST中性束注入器结构

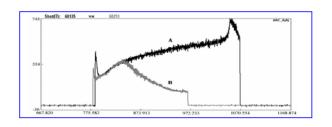


关键科学技术问题

MW级离子源长脉冲运行的关键物理与工程问题


热阴极离子源


RF


离

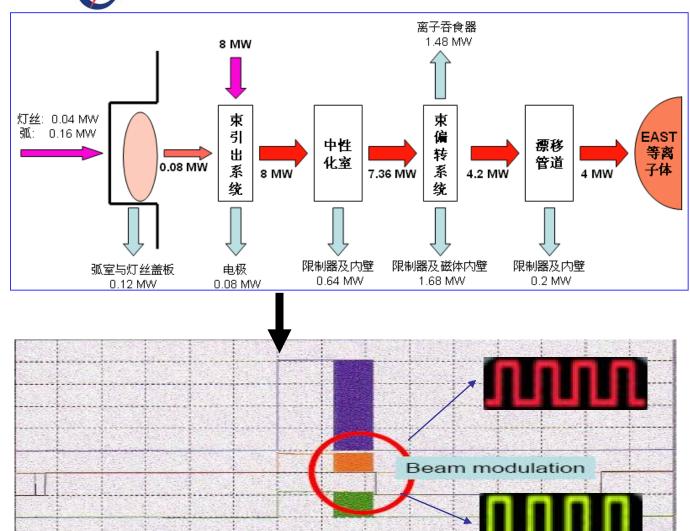
子

源

长脉冲的难题

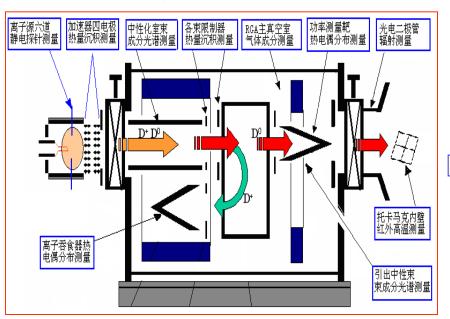
主要研究内容:

- ◆兆瓦级离子源密度反馈运行关键技术研究
- ◆兆瓦级长脉冲离子源关键工艺技术研究
- ◆兆瓦级长脉冲离子源的设计与性能优化研究 研究目标:


在深入分析EAST-NBI物理需求的基础上, 开展离子源的物理设计,针对其长脉冲高功 率运行所关联的物理与工程问题进行攻关研 究,重点研究离子源密度反馈运行技术和束 引出系统成型工艺技术,最终完成EAST-

NBI长脉冲高功率离子源的工程研制。

高功率NBI的调制(50—100Hz)技术


- ◆离子源能承受NBI调制运行的冲击,离子 光学特性良好
- ◆电源系统能按控制 系统的要求精确提供 符合设计指标要求的 电力供应
- ◆控制系统准确控制、 协调各子系统按精准 的时序工作
- ◆诊断系统能快速 诊断出系统的状态, 必要时做出保护

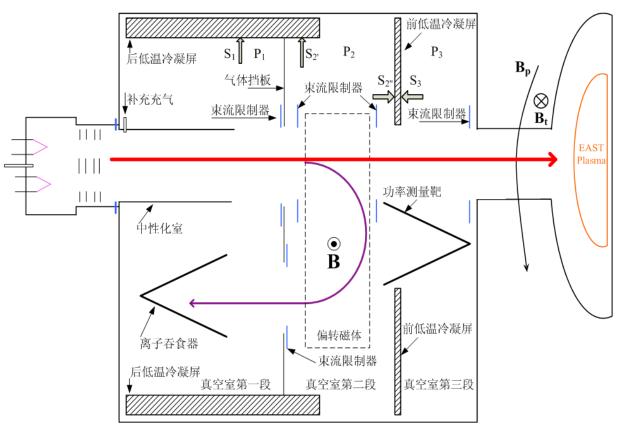
长脉冲高功率NBI束诊断和测控技术

束诊断技术研究

发展长脉冲高功率NBI的束诊断技术,为EAST-NBI研究建立完善的束诊断系统

兆瓦级长脉冲NBI的测控技术研究

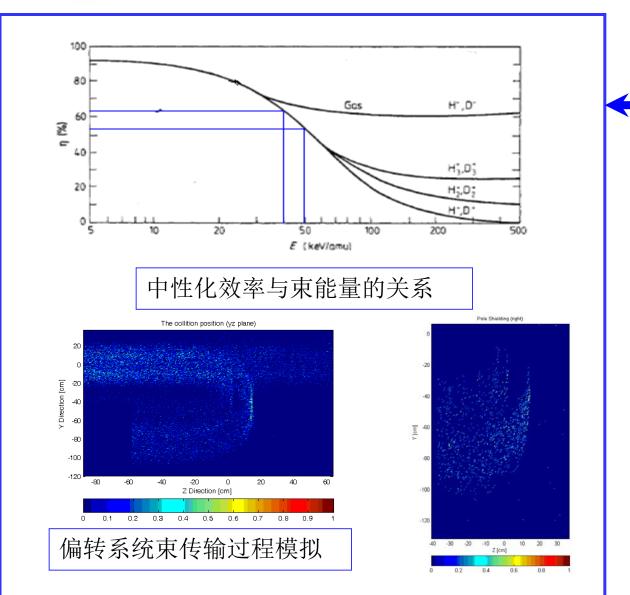
- ◆分析研究EAST-NBI的测控需求
- ◆建立 EAST-NBI测控系统框架
- ◆解决EAST-NBI测控系统关键问题



针对EAST-NBI的测控 需求,研究建立稳定可 靠的EAST-NBI测控系 统

长脉冲高功率NBI束传输技术

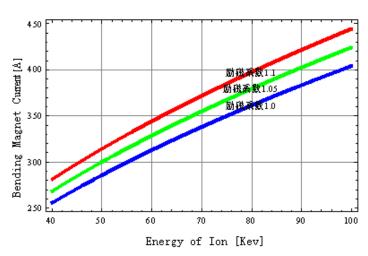
主要研究内容


- 1.长脉冲高功率束传输过程模拟研究
- 2.偏转磁体的性能优 化研究
- 3.低温真空系统的性 能优化研究
- 4.高热流承载部件强 化换热技术研究

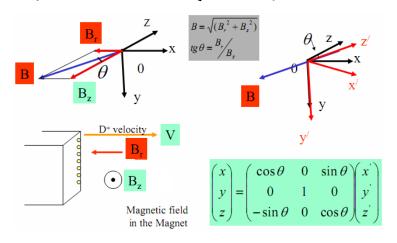
研究目标:为EAST-NBI研制可实现长脉冲高功率的束传输系统

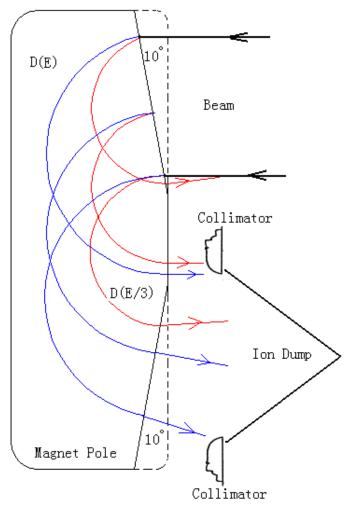
)

长脉冲高功率束传输过程模拟研究



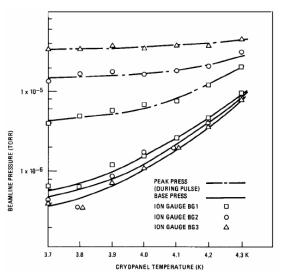
中性化过程模拟 束偏转过程模拟 近期目标 离子源放电模拟 再电离损失模拟 远期目标 虚拟中性束注入器 最终目标


偏转磁体的性能优化研究



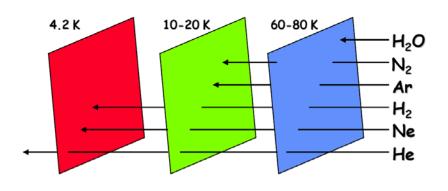
线圈励磁电流与离子入射能量的关系

马克弥散磁体屏蔽与优化



磁极切角优化束功率密度

低温真空系统的性能优化研究



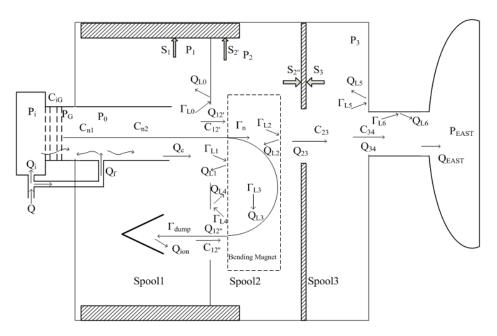
Shielding Panel
Install line
LHe Panel
Nitrogen
Panel

冷凝板温度与真空室段压力的关系

1E-02 1E-03 1E-04 Saturation pressure (mbar) 1E-05 1E-06 1E-07 1E-08 H2 1E-09 D2 1E-10 1E-11 1E-12 1E-13 1E-14 1E-15 1E-16 1E-17 1E-18 3,5 4,5 5 5,5 Temperature (K)

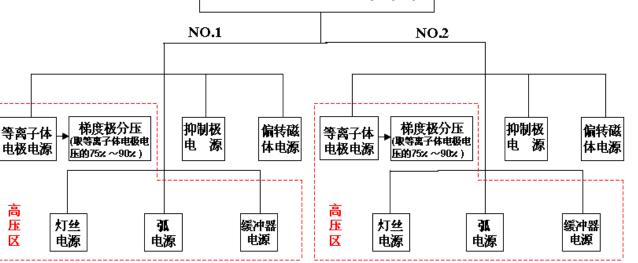
冷凝屏基本结构示意图

低温面抽气速度示意图


低温面抽气原理示意图

真空分布示意图

根据对抽速、装置真空要求、实验现场要求的综合考虑,拟采用差分低温抽气结构。



长脉冲高功率NBI的电源技术

EAST-NBI电源系统

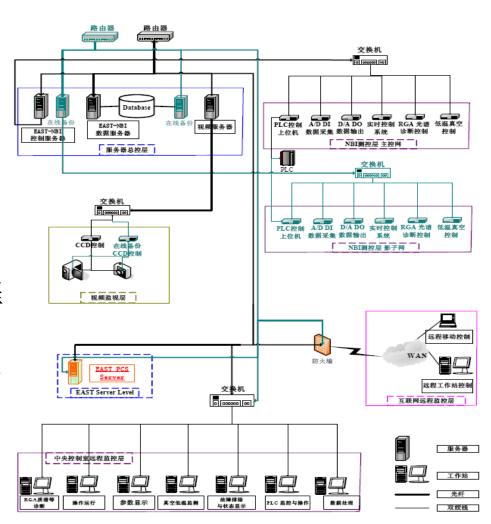
研究目标:

解决长脉冲高功率NBI的供电电源系统的关键 技术难题,完成4MW可调制的 EAST-NBI电源 系统的设计与工程研制

主要研究内容:

- ◆ 兆瓦级长脉冲离 子源的源头电源 系统研究
- ◆ 兆瓦级离子源抑制极电源系统的研究
- ◆ Snubber及辅助 电源的设计研究
- ◆ 兆瓦级长脉冲离 子源的高压电源 系统的设计研究

NBI控制系统

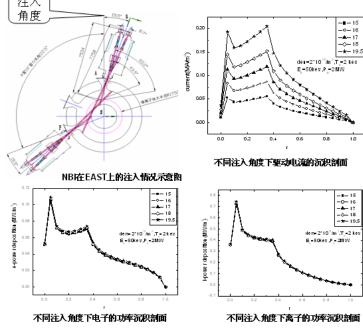


NBICS组成

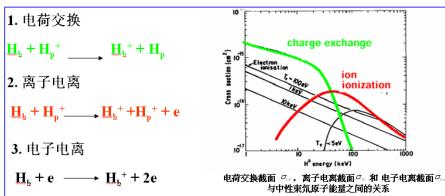
- ◆ 计算机数据处理系统
- ◆ 测控系统
- ◆ 报警连锁保护系统

NBICS作用

- ◆对整个NBI系统的实验运行过程 进行全面的监控
- ◆控制着NBI电源系统的供给及其 幅值和时序的实时调节
- ◆实现数据采集与网络通讯对真空、低温、水、气等所有状态
- ◆进行实时监控、报警和连锁保 护等


长脉冲高功率中性束与等离子体相互作用

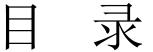
NBI


主要研究内容:

- ◆在掌握以NUBEAM为代表的中性東注入的数值模拟程序的基础上,对其进行完善,形成 EAST中性東注入数值模拟研究程序体系
- ◆开展EAST中性東与等离子体相互作用数值模 拟研究
- ◆开展中性束注入下高能粒子行为的研究
- ◆开展中性東注入实验研究

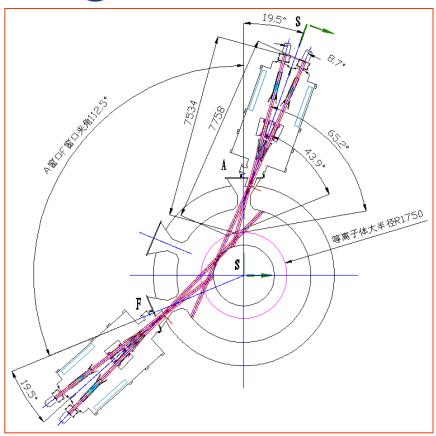
研究目标:

建立适合EAST的中性東注入数值模拟研究程序体系并开展深入的数值模拟研究,为NBI设计和中性東注入实验提供理论指导,并进行实验研究,深入研究聚变物理问题


对于注入的氢原子束,如果能量小于40keV,或者对于氘原子束如果能量小于80keV,则电荷交换过程占优势。如果注入束能量大于以上的值,由离子引起的电离过程侵占优势。

总体研究策略

吸收、消化国内 外NBI经验和技术,开展理论模 拟分析,进行系 统初步设计工作 完成关键器件及 测控系统的研制 ,开展平台测试 。完成系统的集 成和工程运行调 试。 在EAST装置上开 展NBI相关物理 实验研究。积累 长脉冲运行经验 和实验数据。

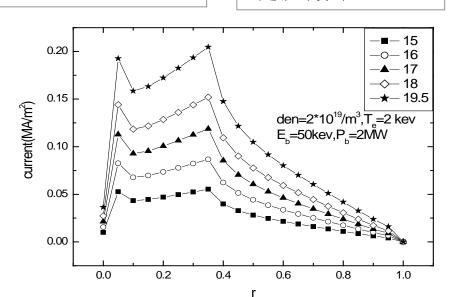


- 1.EAST-NBI科学目标与意义
- 2.EAST-NBI关键科学技术问题
- 3.束与等离子体相关物理研究
- 4.目前的工作进展

理论模拟

研究 团队

磁约束聚变理论中心


NBI室理论与数值模拟研究小组

研究领域与工作基础

- 等离子体加热和电流 驱动理论与模拟
- MHD理论与模拟
- 输运理论与模拟
- 边界等离子体物理
- NBI相关的模拟研究

- 数值模拟程序: NUBEAM、ORBIT、 ONETWO、TORAY、FPP 等
- 初步建立NBI专属的 模拟研究程序体系
- •超级计算中心

- 长期致力于托卡马克等离子体的物理基础理论研究 、实验数据分析和数值模拟;
- •与美国GA公司、PPPL、日本NIFS等有着长期的友好交流和合作;
- 致力于NBI相关的理论与数值模拟研究多年

東与等离子体物理研究

	NUBEAM	ASTRA	DBEAMS	FPP	NBEAMS
Beamline geometry	+	+	+	+	+
Beam composition	+	+	+	+	+
CX losses and recapture of fast ions	+	_	_	_	_
Losses of fast ions to the walls	+	+	+	+	+
Finite orbit width effects	+	_	_	_	_
Finite Larmor radius corrections	+	+	_	_	_
Effect of magnetic ripple	+	+	+	_	_
Effect of fishbone instabilities	+	_	_	+	_
Effect of sawtooth oscillations	+	_	+	+	_
Effect of plasma rotation	+	_	_	+	_
Heating rates	+	等离子体平均密	庁 n− 5∨1019m-3	5000 F	8 800
Momentum sources	+	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一)支 II— 3×10~III。	4000	
Current source	+	NBI功 中心离子 率(MW) 温度Ti	中心电子 β(%) 温度Te	3000	2 MW
Particle sources	+	(keV)	(keV)	2000	No MBI
Energy diffusion of fast ions	+	0 1.2	1.35 0.10 2.81 0.25	0 1	2 3 4
Anomalous diffusion of fast ions	+	4 5.3	3.90 0.41	中心离子温	度随时间的演变过程
ICRF resonant fast ions	_				
Atomic reaction rates	+	Ti 8000		6×10 ⁻⁹ F	
Effect of excitation collisions	+	8000	/		8 MY
Beam stopping on beam ions	+	4000 -	4 MF	4×10 ⁻³	4 mr
Multiple fast species supported	+	2000	2 MW _	2×10 ⁻⁵	2 MW
Fusion product ions	+	0 1 2	No NBI	0 1	80 NBI
Beam-target fusion	+	de Salar de Service Service Salar Service Sa		8.借随时	间的演变过程
Beam-beam fusion	+	中心电子温度随时间的流			

束与等离子体物理研究

- 1.建立EAST束与等离子体相互作用模拟研究程序体系
- 2. EAST中性束与等离子体相互作用数值模拟研究
 - 3.中性束注入下高能粒子行为的研究
 - 4.NBI实验研究

中性束注入数值模拟

中性東注入实验证明经典慢化理论是可靠的,但中性東与等离子体的相互作用仍是非常复杂的,考虑到中性東中包含全能量、半能量、三分之一能量等多种成分,背景等离子体在不同的运行模式下有不同的密度和温度分布,为了严格确定高能离子的沉积分布,必须求解关于其分布函数的富克-普朗克方程,经过近三十年的不断发展与积累,国际上中性東注入的数值模拟已较为成熟,出现一批以NUBEAM为代表的程序。

NUBEAM

- NUBEAM是所有模拟程序中唯一采用蒙特卡罗(MC)方法模拟轴对称托卡马克中快粒子行为的程序,该程序考虑了中性束注入及聚变反应产生的多种快粒子成分,可以处理导向中心轨道漂移、碰撞等慢化过程,是一个功能齐全目前为止最准确的模拟中性注入的数值模拟程序。

ASTRA

- ASTRA程序中包含一个中性束计算模块,它采用pencil-beamlet 近似计算中性束在等离子体中的功率沉积剖面和驱动电流剖面等。

NBEAMS

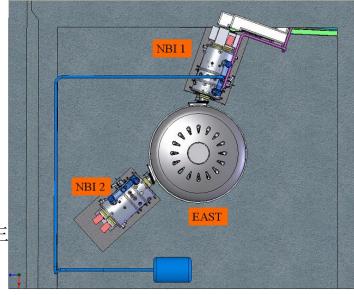
- NBEAMS是一个用于托卡马克中性束加热和电流驱动装置设计的系统程序,可以计算中性束沉积剖面分布、背景离子和电子从中性束获得能量的份额、束等离子体聚变反应率和中性束驱动电流剖面分布。由于中性束主要是通过电荷交换和粒子间的相互碰撞来加热等离子体,所以可以通过求解Fokker-Planck方程来得到快粒子的分布函数,然后利用快粒子的分布函数来求解束的能量在等离子体中的离子和电子上的沉积剖面和驱动电流剖面等。

DBEAMS

DBEAMS是一个主要计算中性束的束粒子的源项分布函数的模拟程序。该程序主要模拟了快离子的源项分布和 慢化等过程。

FPP

FPP是一个通过求解FP方程来模拟由中性束注入或者ICRF加热时产生的快离子的行为的程序。该程序主要的特点是采用了守恒微分算子分裂法来求解FP方程。


TSC(Tokamak Simulation Code)

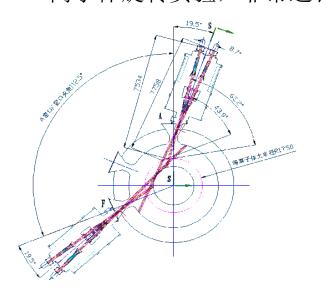
- TSC是由普林斯顿PPPL开发的一个1.5维平衡演化程序,通过在矩形计算网格上解磁流体方程组来模拟自由边界等离子体随时间的演变过程,MHD方程组通过边界条件和外部极向场线圈中的电流相互耦合,同时在磁面坐标中求解压强和密度面平均输运方程

高功率中性束加热研究

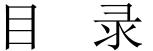
- 现有托卡马克上最有效的离子加热手段
 - 超过点火要求的温度范围,达到40 keV以上(TFTR和 JT-60U)
 - 加热<mark>效率高</mark>,超过**90**%以上,而且对等离子体的位形、 边界的变化不敏感
 - 束的捕获、慢化主要通过与等离子体的<mark>经典碰撞(</mark>包括电荷交换),没有发现明显的反常慢化过程
 - 在中性東加热过程中,高能离子与本底离子间还可产生相当份额的東靶反应,可以提高聚变反应率
- EAST装置将建成两条4MW强流稳态中性束注入系统,其中一条采用正向切向注入,另一条反向切向注入,可实现两条切向束线进行平衡注入,使EAST NBI有足够的灵活性,适应反向NBI驱动等物理研究的需要
- NBI可有效提高等离子体温度,显著改善LHCD、ECCD等的驱动效率,可以与ICRF、LHCD、ECCD等辅助加热相结合研究H模、ITB约束改善等前沿课题,探索高功率加热下稳态高β近堆芯等离子体相关问题。

- 4+4MW NBI @ 50~80keV
- 4MW ECH/ECCD @ 140GHz
- 6.0+6.0MW ICRF @ 25-75MHz
- 4MW LHCD @ 2.45GHz [
- 6MW LHCD @ 4.6GHz
- 总计 >25MW辅助加热功率

中性束电流驱动研究


- 利用切向注入中性束,在DIIID、TFTR、JET、JT-60上已实现了完全由中性束驱动的环向电流维持稳定的托卡马克平衡位形,存在时间达几秒以上,而对存在时间的限制来自中性束注入功率本身,EAST NBI系统的设计脉冲时间可达100s,有望在托卡马克长脉冲及稳态运行方面取得新的进展。
- 稳态运行是未来托卡马克反应堆的发展方向,等离子体电流分布剖面的控制是实现先进运行模式的最关键问题之一。

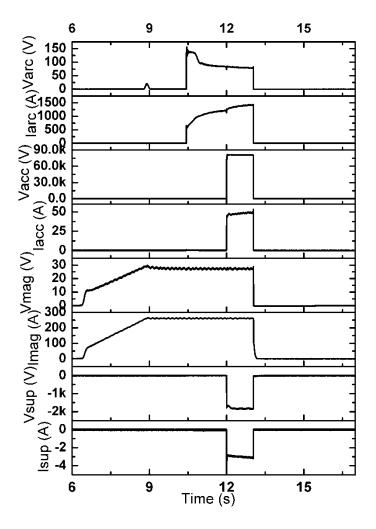
中性東电流驱动NBCD是EAST装置上重要等离子体电流分布剖面控制手段,与
 LHCD、ECCD等电流驱动手段相结合,以实现先进运行模式,研究ITB形成和约束改善的机制问题。


中性東注入对等离子体动量输运影响

- 大功率的NBI是托卡马克提供外部动量输入的主要途径,大功率的NBI使等离子体具有极大的旋转速度,由此带了等离子体品质的提升已在很多装置上得到验证。
- 近年来,在即使没有外部NBI提供动量输入的情况下,在很多装置上也发现了等离子体有一定的旋转速度,被称之为自发旋转。这种自发旋转的形成机制和其对等离子体性能的影响就显得极为重要,是目前国际研究的热点和重点之一。
- 由于EAST具有同向和反向注入两条束线,可以实现平衡注入及非平衡注入驱动等 离子体旋转实验,非常适合等离子体动量输运的研究。

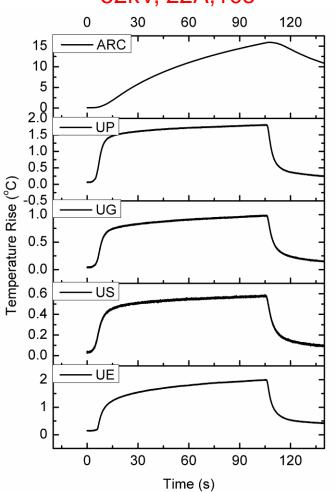
两条平衡注入的4MW 80keV中性束注入可提供扭矩为±3.3N*m的动量注入


1.EAST-NBI科学目标与意义

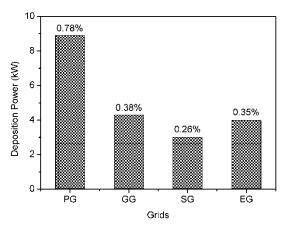

- 2.EAST-NBI关键科学技术问题
- 3.束与等离子体相关物理研究
- 4. EAST-NBI的工作进展

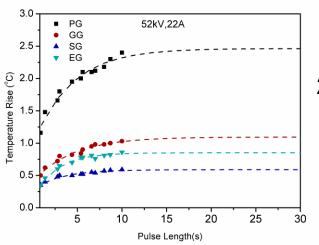
工作进展

50kV、16A、100s离子束引出实验波形


80keV、52A、1s的离子束引出实验波形

工作进展



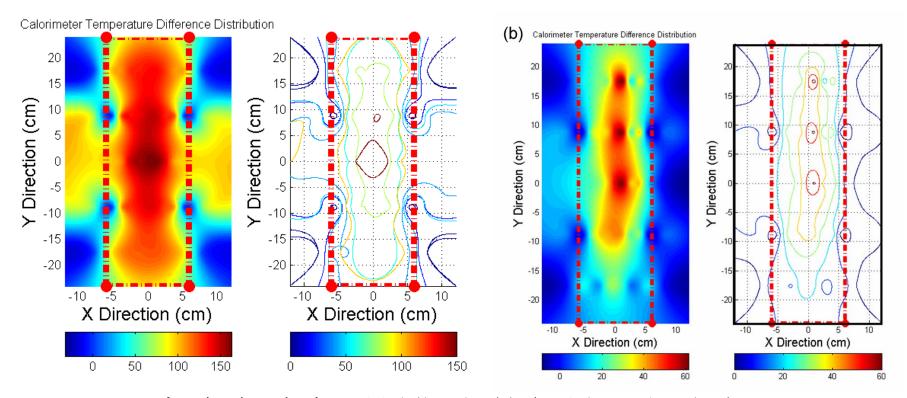


弧室与各电极的冷却水温升曲线

1MW東引出时各电极的能量沉积及占 总能量的照百分比

20秒就趋于 热平衡

电极的主动冷却能力满足于长脉冲束 引出的需示


工作进展

50kV, 16A,100s,调制模式

80kV, 50A,1s

束流在功率测量靶上的能量沉积分布

(其中图中红色矩形虚线框的面积与离子源的引出面积相当)

EAST-NBI引出束有较好的束位形,能够满足等离子体加热的需求

工作进展 3.9% 4.6% 1.3% 3.3% 5.6% Magnet Source Baffle 3.7% collimators collimator collimator 1% Duct collimator Ion source 1.6% Neutralizer Drift duct Neutral particles **EAST** Tokamak Charged Calorimeter Ion return particles 89% collimator 65.8% Hydrogen 2.4% Magnet louvres

beam power deposition distribution on the heat load components (Orange: magnet off, Blue: magnet on; Vacc=52kV)

Magnet pole shields

0.4%

10.2%

lon

dump

0.1%

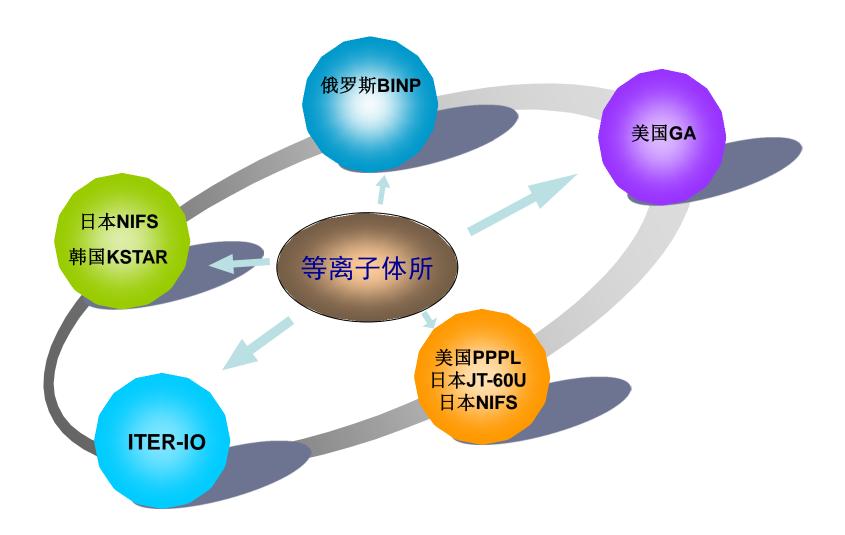
7.5%

cryopanel

Gas

supply

Magnet off


Magnet on

cryopanel

广泛的国际合作

结语

- 长脉冲高功率NBI是实现EAST科学目标必不可少的辅助加热手段,也是ITER装置优先建设的辅助加热系统。与ITER相关的NBI物理和工程技术问题亟需进一步理解和解决。
- NBI依托EAST大科学工程装置,立足其科研发展规划,深入 开展MW级长脉冲中性束注入加热系统相关的关键物理与工程 问题研究,形成长脉冲高功率NBI系统分析、设计的方法体系, 并为其研制一套设计参数为束功率4MW、脉宽100s、可调制 (1-100Hz)运行的长脉冲高功率NBI系统
- 可为EAST开展高水平近堆芯聚变研究提供有力支持,为我国培养中性束注入加热领域的高水平专门人才,切实提升我国参与ITER项目的国际竞争力。

